
Workout Exam April 22, 2010

Fred Wubs

January 20, 2011

1. (a) LN chnulp1:9 Book 2.3.
In the Newton method the estimate of the next zero of f is the zero of the
linear approximation of f at the previous zero.

(b) LN chnulp1: 14 Book 2.3
In the secant method the estimate of the next zero of f is the zero, say xn+1,
of the line that passes through the last two pairs (xn, f(xn)), (xn−1, f(xn−1)).
The algorithm of Newton’s method needs both the function and its derivative,
the secant method only needs the function. So for the secant method the user
only has to program the function.

2. (a) LN chnulp2d:3 Book 10.1-2
Here

g(x) =
[
x− 1

2f1(x, y) + 1
4f2(x, y)

y − 1
4f2(x, y)

]
The Jacobian matrix of g is defined by

∂g(x)
∂x

=
[

(g1)x (g1)y
(g2)x (g2)y

]
Hence

∂g(x)
∂x

=
[

1− 1
2 (f1)x + 1

4 (f2)x − 1
2 (f1)y + 1

4 (f2)y
− 1

4 (f2)x 1− 1
4 (f2)y

]
One can also express the Jacobian of g in the Jacobian of f . First we write

g(x) = x +
[
− 1

2
1
4

0 − 1
4

]
f(x)

So the Jacobian of g can be expressed in that of f by

∂g(x)
∂x

= I +
[
− 1

2
1
4

0 − 1
4

]
∂f(x)
∂x

The Jacobian of f(x) is given by

∂f(x)
∂x

=
[

(f1)x (f1)y
(f2)x (f2)y

]
=
[

exp(x) 1
2x 2y

]
So the Jacobian of g is

∂g(x)
∂x

=
[

1− 1
2 exp(x) + 1

2x − 1
2 + 1

2y
− 1

2x 1− 1
2y

]
(b) See LN chnulp2d:3 or 4, Book 10.1-2

We just have to study the eigenvalues of the Jacobian of g in the fixed point
(0,1): [

1
2 0
0 1

2

]
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The matrix is already in diagonal form hence the eigenvalues can be read from
the diagonal and both a 1

2 . Since these are clearly less than 1 in magnitude the
method will converge near the fixed point.
Instead of the eigenvalues one can also look to the norm of the Jacobian (though
this gives only a sufficient condition for convergence) which is also 1

2 here.

3. (a) See LN chinterpFW:1, book 3.1
This is simply a straight line through the points (0, 1) and (1, exp(2)). Hence
p1(x) = 1 + (exp(2) − 1)x. The interpolated value at x = 1

2 is p1( 1
2 ) = 1

2 (1 +
exp(2)). One could also use the Lagrange basis functions (p1(x) = x−1

0−1 f(0) +
x−0
1−0 f(1)) or Newton divided differences (p1(x) = f(0)+(x−1)f [0, 1]) to derive
the same interpolation formula.

(b) See LN chinterpFW:2, book 3.1
The error fomula is in this case f(x) − p1(x) = x(x − 1) f

′′(ξ(x))
2 . The second

derivative of our function is 4 exp(2x). So we end up with the error formula
f(x)−p1(x) = 2x(x−1) exp(2ξ(x)) where ξ(x) is a point on the smallest interval
containing 0,1 and x. Since in our case x = 1/2 we can take for ξ(x) the point
where exp(2x) becomes maximal on the interval [0,1]. Here at 1. So we have

|f(
1
2

)− p1(
1
2

)| ≤ exp(2)
2

The only condition for this error estimate to hold is that the function f must
be twice differentiable which is clearly the case.

(c) See LN chinterpFW:3 The true error is f( 1
2 ) − p1( 1

2 ) = e − 1
2 (1 + exp(2)) =

−( 1
2 (1 + exp(2))− e) which is clearly negative. This should be less than what

is found as bound. So

1
2

(1 + exp(2))− e ≤ exp(2)
2

or 1
2 − e ≤ 0 which is clearly the case.

In the formula in (b) there is a point ξ( 1
2 ) on [0,1] for which there is equality.

We just took the worst case where the exponential is maximal on the interval,
which yields an upperbound.

4. (a) The interval [0,1] is split up in 25 equal parts of length 0.04.
(1) LN chintgrFW: 9, book 4.3. Since 25 is odd, one of the intervals runs
from 0.48 to 0.52. The “Rechthoek methode” is the midpoint method in the
book/LN. So the approximation is the value of the function in the midpoint of
the interval times the length of the interval. This yields here (12( 1

2 )2) 1
25 = 3

25
(2) LN chintgrFW: 4, book 4.3. The trapezium rule just takes the average
of the function values at the endpoints and multiplies it by the length of the
interval. So that results in 1

212(0.482+0.522) 1
25 = 1

212[( 1
2−

1
50 )2+( 1

2 + 1
50 )]2 1

25 =
12
25 [( 1

2 )2 + ( 1
50 )2] = 3

25 [1 + ( 1
25 )2]

(b) LN chintgrFW: 15,16,17
The integrand is infinitely times differentiable, hence one can use the Taylor
formula to any order. This is needed to derive expressions like the q-factor. For
I(64) we have

q(64) =
I(32)− I(64)
I(64)− I(128)

=
7.32 10−4

1.83 10−4
= 4.00

So there is second order convergence here.
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(c) LN chintgrFW: 26, book 4.2 So we know that I = I(n) + ch2 + O(h3) and
hence I = I(n/2) + 4ch2 + O(h3), where c is some constant. We want an
approximation that has an higher order than 2. So we have to get rid of the
O(h2) term. Multiply the first by four and subtract the second one and we get

3I = 4I(n)− I(n/2) +O(h3)

Hence

I =
4I(n)− I(n/2)

3
+O(h3)

So Î(n) = 4I(n)−I(n/2)
3 gives a more accurate approximation of I. Plugging in

the numbers I find on my calculator the Î(n) = 4, which is more accurate than
I(128).
The extrapolated value is indeed exact here. Observe that the integrand is
quadratic and that both the midpoint method and trapezium method are exact
for linear functions. However an extrapolated result based on either of the
methods will be exact for at least 1 degree higher polynomials, so for quadratic
polynomials.

5. (a) LN as in 4c but also chgdvFW:42,43, book 5.8.
Since it is second order we can reuse our formula derived in 4c. The error is
I − I(n) and hence it holds

I − I(n) =
I(n)− I(n/2)

3
+O(h3)

Hence I(n)−I(n/2)
3 approximates the error. Here that is (0.198991-0.195838)/3=0.001051.

Another way of deriving this expression is to eliminate I from the first two ex-
pressions in 4c and then to find the expression for the main term of the error
ch2 which leads exactly to the same formula as above.

(b) For a better result we can use our original formula in 4c or just add I(n) to the
error which is 0.198991+0.001051=0.200042

(c) The method of Heun is a Runge-Kutta method with two steps. Probably it is
easiest remembered by deriving it from the trapezium method as on page 41 of
the LN. The method reads

wn+1 = wn +
1
2
h[f(xn, wn) + f(xn+1, ŵn+1)]

where ŵn+1 = wn + hf(xn, wn) Here f(x, y) = −y2. Using this ŵn+1 = wn −
hw2

n and

wn+1 = wn+
1
2
h[−w2

n−ŵ2
n+1] = wn−

1
2
h[w2

n+(wn−hw2
n)2] = wn−hw2

n+h2w3
n−

1
2
h3w5

n

One should check that the second term in the last expression is indeed an
approximation of hf(xn, wn).

6. (a) LN chla1: 8,9, book 6.5. The LU factorization is performed column by column.
We have to sweep zeros below the diagonal in the first two columns of the
matrix. L contains the multipliers needed to make the zeros. So for the first
column we have to multiply the first row by a half and subtract it from the
second row (this action forms a intermediate result). This means that the
multiplier for the second row is 1

2 . The first row U remains unchanged. We can
write this as  1 0 0

1
2 1 0
0 0 1

 2 1 1
0 3

2 − 1
2

0 1 2
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Note that when you multiply these two matrices you get the original matrix.
Now we proceed on the 2 × 2 submatrix in the lower right corner in the right
matrix. It is clear that from this matrix we have to multiply the first row by 2

3
and subtract it from the second row. This is the new multiplier. The result of
this subtraction is put in the last row. We get now 1 0 0

1
2 1 0
0 2

3 1

 2 1 1
0 3

2 − 1
2

0 0 2 1
3


This is the LU factorization of the original matrix.

(b) book 6.3 Row interchanges are performed to constrain the propagation of round
off errors. In the first column of the submatrix in the current elimination step,
one seeks for the largest element in modulus. The row with the largest element
is interchanged with the current first row. As a result of this all multipliers will
be less than one in modulus.

7. (a) LN chpdv:1-4 book 11.3, 12.2.
Let ∆x = 1/m. The discretization is performed in two steps, first in space and
next in time. The standard discretization for uxx is

uxx(xi, t) ≈
ui+1(t)− 2ui(t) + ui−1(t)

∆x2
for i = 1, ...,m− 1

where ui(t) = u(xi, t). With this approximation we transform the PDE into a
system of ordinary differential equations

dvi
dt

(t) = κ
vi+1(t)− 2vi(t) + vi−1(t)

∆x2
for i = 1, ...,m− 1 (1)

where vi(t) approximates ui(t). The initial condition is vi(0) = 100 sin(πi∆x)
and the boundary conditions v0(t) = 0 and vm(t) = sin2(πt). This completes
the discretization in space. Next we apply the explicit Euler method to this
system of equations. Let wni ≈ vi(n∆t). Then we write

wn+1
i = κ

wni+1 − 2wni + vni−1

∆x2

with initial condition w0
i = 100 sin(πi∆x) and boundary conditions wn0 = 0,

wnm = sin2(πn∆t).

(b) LN chpdv: 7-9. book 12.3
The maximum time step is restricted by ∆t ≤ 2

κ∆x2. Here ∆t ≤ 2
10−3 (200)−2 =

1
20

(c) LN chpdv: 14, book 12.3 If we employ the backward Euler to the system of
ODEs (1) we get

wn+1
i = κ

wn+1
i+1 − 2wn+1

i + vn+1
i−1

∆x2

with exactly the same initial and boundary conditions as the forward Euler
method. The backward Euler method is unconditionally stable for this problem.
So there is no restriction on the time step.
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